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EW correction at the LHC Motivation

Example of electroweak corrections

@ Electroweak corrections to dijet production (O(aa?))
» EW vertex correction

X 5]
O(aas) O(as)
» EW box correction
X >
O(aas) O(as)

Jia Zhou (Fermilab, UB) FermilLab Seminar Talk August 26, 2014 3 /58



EW correction at the LHC Motivation

Electroweak corrections enhanced via Sudakov logarithms

@ Electroweak corrections at the LHC can be enhanced at high energies
due to soft/collinear radiation of W and Z bosons.

@ When all kinematic invariants 7;; = (p; + pr)? are much larger than
the heavy particles in the loop, i.e.,
rij| ~ Q% > M2, ~ M2 ~ M% ~ m?, electroweak corrections are
dominated by Sudakov-like corrections:

ol og™(Q*/Miy) | (n< 20— 1, aw = ")
w
> Q =1TeV,
aw log?(Q?/ME,) ~ . aw log(Q? /M) ~
> Q= 14TeV,
DL ~ , SL ~
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EW correction at the LHC Motivation

Why electroweak corrections?

@ The inclusion of EW corrections in LHC predictions is important for
the search of new physics in tails of distributions, e.g., search for W’,
Z', non-standard couplings

@ It is also important for contraints on PDFs measurement
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EW correction at the LHC Motivation

Why electroweak corrections?

@ Calculations of electroweak corrections are often not readily available
in public codes and can quickly become complicated (and CPU
intensive) for high multiplicities.

@ As a first step to improve predictions for the LHC at high energies,
one could implement the Sudakov approximation of electroweak
corrections.

: Weak Sudakov corrections to Z + < 3 jets in Alpgen
M. Chiesa et al/, PRL111 (2013).
See also a recent proposal to add EW corrections to HERWIG:
[http://arxiv.org/pdf/1401.3964.pdf]

@ Our goal is to implement EW corrections in MCFM so that they
become readily available to the experimental community and can be
studied together with the already implemented QCD corrections.
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EW correction at the LHC Motivation

Public codes of the EW corrections to DY-like process

o Complete EW O(«) corrections: HORACE, RADY, SANC,
W/ZGRAD?2 U. Baur et al, PRD65 (2002); C. M. Carloni Calame et al,
JHEPO5 (2005); U. Baur, D. Wackeroth, PRD70 (2004); S. Dittmaier, M.
Kramer, PRD65 (2002); A. Andonov et al, EPJC46 (2006); Arbuzov et al,
EPJC54 (2008); S. Dittmaier, M. Huber, JHEP60 (2010).

@ Multiple final-state photon radiation: HORACE, RADY, WINHAC,
PHOTOQOS W. Placzek et al, EPJC29 (2003); C. M. Carloni Calame et al,
PRD69 (2004); S. Brensing et al, PRD77 (2008).

@ NLO EW corrections to W production in POWHEG
C. Bernaciak, D. Wackeroth, PRD85 (2012).

@ NLO EW corrections to Z production in POWHEG
L. Barze et al, EPJC73 (2013).

@ NLO EW corrections to Z production in FEWZ with NNLO QCD
Ye Li, F. Petriello, PRD86 (2012).
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EW correction at the LHC Motivation

Implementation in MCFM

@ We will provide both the Sudakov approximation for EW corrections
valid at high energies and the complete 1-loop weak corrections to be

able to quantify the goodness of the approximation.
>

I Weak Sudakov correction v/
Il Exact NLO weak correction v/

> ( )

I Weak Sudakov correction v/
Il Exact NLO weak correction v/

> ( )

I Weak Sudakov correction — ongoing
Il Exact NLO weak correction — ongoing

@ For a recent review of status of EW corrections see:
[https://phystev.in2p3.fr/wiki/_media/2013:groups:Ih13_ew.pdf]
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Intro to EW Sudakov logarithmic corrections

Sudakov logarithms calculations

@ Vertex Part at Very High Energies in QED
V. V. Sudakov, Soviet Phys. JETP3 (1956) 65

@ Some Refs. for the general Sudakov logarithmic corrections
P. Ciafaloni, D. Comelli, PLB446 (1999), arXiV:hep-ph/9809321; M.
Beccaria et al, PRD61 (2000), arXiv:hep-ph/9906319; J. H. Kiihn, A. A.
Penin, arXiv:hep-ph/9906545; M. Melles, Phys. Rept.375(2003),
arXiv:hep-ph/0104232; A. Denner, S. Pozzorini, EPJC18 (2001),
arXiv:hep-ph/0010201; A. Denner, S. Pozzorini, EPJC21(2001),
arXiv:hep-ph/0104127; S. Pozzorini, arXiv:hep-ph/0201077; W.
Beenakker, A. Werthenbach, NPB630 (2002), arXiv:hep-ph/0112030; A.
Denner et al, JHEP0811 (2008), arXiv:0809.0800.

» The general algorithm of Denner and Pozzorini is adopted in the
implementation in MCFM
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Intro to EW Sudakov logarithmic corrections Universal logarithmic corrections

Double Logarithmic (DL) Mass Singularities

Eikonal approximation g# — x - p{il, and z — 0

SPL AP Pin = Z i

Pq k,l=1,(<k)

L d eik.
—4Z€2pkpllfz ( )qu( )M Zkllzn
k
z%/ = M2 )k + @) = m3, e — @) —m3, ]

g =V®= A, Z W=, others are mass supressed (such as ¢=, X", H).
z'eff‘fik is the coupling of the vertex ©q@; ¥i, .
k
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Intro to EW Sudakov logarithmic corrections Universal logarithmic corrections

Double Logarithmic (DL) Mass Singularities

3-point scalar integral

d4 1
Co = /<2w>4[q2—MaaH<pk+q>—m2 o= a)? —m? ]

i, 1)1 4 —r,%l — g€ 9
C — — < -1o i I , M2 ay My
0 o 2 g (M\Q/a s + m;[ (pm 1%

where 71 = (pg +pl)2 ~ 2pg - pr,

2p?
I - LIQ o . . ’
¢ ; (Me/a — m?,m + p2, + Kk(p2,, ME. — ie, m?;n — 25))

k(a,b,c) = Va2 + b2 + ¢ — 2ab — 2ac — 2be.
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Intro to EW Sudakov logarithmic corrections Universal logarithmic corrections

Double Logarithmic (DL) Mass Singularities

Discarding imaginary and finite pieces that do not increase with energy, we
obtain a symmetric DL proportional to the Born amplitude:

tog? L0 12, M2 |1V 1 i

DL g git.iin _ ¥
5 M 4 M2 kl Ll YU
m=
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Intro to EW Sudakov logarithmic corrections Universal logarithmic corrections

Double Logarithmic (DL) Mass Singularities

Discarding imaginary and finite pieces that do not increase with energy, we
obtain a symmetric DL proportional to the Born amplitude:

DL § giy.in _ & 2 |7kl Ve Ly il i
6‘/11 M“ ¢ —E log M2 +27nzkl]: pmvaa7 )IZ ZkIZ ZZM ki

L.(p2,, M., m?,m) is significant only if V¢ = A.
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Intro to EW Sudakov logarithmic corrections Universal logarithmic corrections

Double Logarithmic (DL) Mass Singularities

Discarding imaginary and finite pieces that do not increase with energy, we
obtain a symmetric DL proportional to the Born amplitude:

DL girin _ @ |, o |7k va e in
5vaM11 2 _E log M‘Z/ +QZI pm,Mva,m/ )I I M

i lk ”LZZ
m=k,l

L(p,. M., m% ) is significant only if V* = A.

Universal DL
DL il ooclp, ew
§PL pir-in = Co Mg
k 1 Ve
Loge L _ Lo 10g2 M 451 — sy L2, MEe, 2 )
X |5 log _*VGAOg —0yag)le(p ay My
2 ° M2, A2 o Ve i,
va e dy.ih.ili i1 eeih oiin
: we have written ;Va ZILIE Ii;ciklizil,/\/[o koot =3 CIe LkMO k , where
‘.e,w.k = Zva, Ivalva is the Casimir operator.
il i
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Intro to EW Sudakov logarithmic corrections Universal logarithmic corrections

Collinear Mass Singularities

Virtual gauge boson goes collinear when ¢* — x - p}

(Y25
‘R coll
(pig Pig

5collMgoik( ) — 5coll . Sﬂz// Z

P; //@zk

=)

Vva %;g

-2
l#k ‘Pig

trunc.
\ L d eik. 7 coll. )

Subtracting the soft and collinear eikonal contributions which have been
accounted for in DL.
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Intro to EW Sudakov logarithmic corrections Universal logarithmic corrections

Collinear Mass Singularities

—iK, eIV 1V

60011 M%Z _ ZZ 4— D/ PPy 0105
@uﬁmk _M‘Q/QH( - - 2,]7

Ve @ Q) M%‘
K - 1, ; is a scalar or transverse gauge boson,
vio 2, ; is a fermion.
Collinear single logarithmic corrections
2 2
coll 2 LA (6% ew K 2 M
6801'%90%' M 471- Pi C‘P i’ Pi lo 08 75~ M2 + 5@1’/‘101@ log M2
2 2 %
! max (Mg, Mz, M%/) MO
=20 Bl o3 M2 ' "
Va wir 1%74
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Intro to EW Sudakov logarithmic corrections  Single logarithmic corrections from renormalization

Logarithmic corrections from renormalization

Wave Function Renormalization

5WFM<P1~..90n (pl; 500 7pn) = (‘O‘kw_‘

V(l
[z /
Q1 Ph P WF
M ) 83,
k=1 ¢
1
WF  _
5%% = 552%%, For all but V7,
1 a
WF _ 4
6Va ve T §5Z<I>a’<1>ﬂ+5A Oyarya
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Intro to EW Sudakov logarithmic corrections

Single logarithmic corrections from renormalization

Logarithmic corrections from renormalization

Parameter Renormalization

Reat VNN ) Aoi = hi + O\
= 8A7, @ #2:§7 0,2 i T+ @
M2
Parameters: [¢e], , hy =%  |hyg = Méé
Setting p? = 3
w2 3 My
log 2 +/log —2 =|log—- ) yUR = pF = ——, My ,2My
MR
i i i free to choose of p?(u%) = §
loop combination
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Intro to EW Sudakov logarithmic corrections  Single logarithmic corrections from renormalization

Leading approximation(LA) in renormalization CTs

@ FRCs to External legs
@ Chiral fermions

«

2 2 2
LA A [ My, My top
8Z = — |-C%. log——5 + 21o — 3log + 462 s
f?of;a A |: fio g]&{‘%v ijza ( & A2 m? 15

) Jso
jso
m2_ 2
m
top LA @ fj,—o
5Zf» = [45 <(1+5KR) T+ 5.1 L=z
w M, w

@ Parameter renormalization
@ Mixing-angle renormalization

2 2 2
deyy _ S My, -~ SMz LA SW b l(,u )
cw M3Z, M2 cw

@ Charge renormalization
1 SW
§Ze = ——|0Zaa+ —6Zaz
2 cw

1 2
= *gbzwAl(Mz) 3 > N(f;Qfmil(Mav,mfz )
Fo it o,
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Application Drell-Yan

Sudakov approximation to Drell-Yan process

Process under consideration: q,¢, 1515 — 0

ploto

qa 15
Z/A

a 5
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Application Drell-Yan

Sudakov approximation to Drell-Yan process

Process under consideration: q)‘ ALELE 5 0

p olo
qa 15
Z/A
a, Iy
Born amplitude
e KRR A M
MBI = &R, = O,
S
1 1
o NN _ 3 3
N=Z,A w w
Yy, . — weak hypercharge; Tdi . — 3rd component of weak isospin.
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Application Drell-Yan

Sudakov approximation to Drell-Yan process

Leading and subleading soft-collinear corrections

o M2
S~ [O;¢L<s> 2017 o8 1y + @ L2 ) |

r qP

t 0o I£| [
SSC _ 4 ALOKL " 11
024 Dayisls = l(s) 4Rq?l§ loga 4 o RquK <5pglog . d_po log .
404, Qu, UMF) log
« S « S
L(3) := — log? , Iz =1(8) == —log —s5-.
4 M&V 4 MI%V
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Application Drell-Yan

Sudakov approximation to Drell-Yan process

Collinear or soft SL corrections

M2
s i

2
1 mj
C ew

+2@f3%ni>}

Parameter renormalization corrections

PR _ SW 5 ew _ pew %g\:/ln
Paisls = LW AZRq bAA} lpr
2
_ 1 Sy 3 3
A, = Yo Yo + 587 15.15,
iPk T
R¢i¢k

o e 108 e CEgew Moy o, 1
lc =lyur =lpr =1(38) := og VER Az = 62,8, AA T T
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Application Drell-Yan

One-loop weak correction to Drell-Yan

@ Vertex corrections
@ virtual gauge boson exchange between fermion external legs

p2 fr
p3 Ve
- FN(plvavMVa) ® M\A<
P fH
@ internal W-pair in vertex
f:"i
w
= G"(p1,p2, Mva) Q)
w _
fﬁ

@ scalar boson correction are suppressed by m s«
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Application Drell-Yan

One-loop weak correction to Drell-Yan

@ Self energy corrections

a - UGN -
\Y% \Y% - ~ . vV VvV VvV
S — M‘Q/a + iMyalya

@ denotes the coupling: I}/; v.s. the final state fermion coupling is I}Zf

@ 7 decay width in vertex and self-energy corrections

Constant Z width I'z, no Z or W width in bubble or triangle integrals:

'u/\ AN V_ _ig/.tl/
VNNV = — 3 -
S — MZ +iMyI'y
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Application Drell-Yan

One-loop weak correction to Drell-Yan

@ Box corrections

p1 Ve P3 p1 Ve D4
Y A Y Y
p2 Va y D2 Ve p3
V=2 W*

@ Z width in box correction
Constant Z width in Born, no Z or W width in box

2 2
5— M7

dopox = 2Re (Mpox X M X —
bo: ( bo: Born) (S B M%)Q 4 M%I‘QZ
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Application Drell-Yan

Input parameter schemes for «

> use «(0) everywhere; the relative corrections
sensitively depend on the light-fermion masses via aclogmy terms
that enter the charge renormalization.

> the relative corrections have contributions from
Aa(Mz), which accounts for the running of the electromagnetic
coupling from Q = 0 to @Q = Mz and cancels alogmy terms; free of
light-fermion mass dependence.

> use the Fermi constant G;; corresponding
electromagnetic coupling a,, = v2G, M2, (1 — M32,/M2)/r; relative
corrections have contributions from Ar, which describes the radiative
corrections to muon decay. And it is also free of light-fermion mass

dependence.
[Dittmaier and Huber, JHEP 1001 (2010) 060; arXiv: 0911.2329]
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Application Drell-Yan

The input parameter setup

@ Both calculations are included in MCFM

» Exact
» Sudakov

’The input parameter setup in I\/ICFM:‘

G, = 1.16639 x 107° GeV ™2, sin® Oy = 1 — M, /M3,

oy = 1/132.5605045, Tz = 2.4952 GeV, cos® Oy = Mj, /M3,
My = 91.1876 GeV, My = 80.425GeV, My = 120 GeV,

me = 0.51099892 MeV, m,, = 105.658369 MeV, m, = 1.777 GeV,
my = 66 MeV, m. =1.2GeV, m; = 173.2GeV,

mg = 66 MeV, ms; = 150 MeV, my = 4.6 GeV,

pr = pr = Mz.
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Application Drell-Yan

One-loop weak correction: Numerical result

@ Comparison with WZGRAD at 14 TeV
Mj+;- > 100 GeV, ‘pT7l:i:| > 20GeV, ‘7’]1:{:‘ < 2.5
R — INLO ~ 01O
OLO

0.02

-0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14
-0.16

2018 | \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500  400C

M- (GeV)

R
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Application Drell-Yan

Comparison: Sudakov approximation and exact calculation

@ Invariant mass and transverse momentum distributions at LHC (14
TeV) with MCFM

NC-Drell Yan NC-Drell Yan

Sudakoy ------- Sudakov -------

Relative Correction &
Relative Correction &

0 1000 2000 3000 4000 5000 6000 7000 8000 0 500 1000 1500 2000 2500 3000 3500 4000

My [GeV] P17 [GeV]
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Application Drell-Yan

Summary to NC-DY

@ A good exercise to start with

@ To better understand and characterize the validity of the Sudakov
approximation by comparing with the exact NLO calculation

@ Have implemented both Sudakov approximation and exact NLO weak
in MCFM

@ Sudakov approximation shows good agreement with exact NLO weak
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Application ¢ production

Sudakov approximation to ¢t production

Processes under consideration: (j;‘q/’)\t”t_” — 0 and ggt"t" — 0

q t g t

|

q t g

o Chiralities to initial and final states
@ massless initial quarks(gluons) — chirality = helicity, conserved during

transportation,
@ massive final top quarks — chirality # helicity, oscillating along the

moving direction.

@ Use projector to restore the weak corrections in the chiral coupling

=} =2 = E DA C
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Application  t% production

Sudakov approximation to ¢t production

@ Two ways to proceed the calculation

© break down the amplitude with chiralities v/
@ calculate the matrix element square directly

Chiral Born
M B = IMrL]® + Mg [* + [Mig[* + [ Mg,
IMipl® = IMgg|?,  [Mig|? = [Mge|?
@ Universal correction independent of chirality
> [-CWE) = 3+ 10)] 1Mo

7z
@ Angular dependence and Yukawa enhanced terms

@ | No parameter renormalization‘
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Application ¢ production

One-loop weak correction to tf production

@ Specific process at partonic level

q t
o
q t
g t sTor— —>—
X A A
& ! T T BS S <«

Tree level strong production order of O(ag)‘
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Application ¢ production

One-loop weak correction to ¢t production

@ Weak correction to quark-antiquark annhilation

Va

Vi=_27 w*
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Application  t% production

One-loop weak correction to tt production

@ Weak correction to quark-antiquark annhilation

@ difference between the strong mediated process and the pure weak
process: IR divergence in virtual correction
@ real correction: gluon radiation from Z/g-mediated Born

§AVA< o=

O(ay/ay) O(¥as)

*

o QCD box interferes with the Z-mediated Born (same order of O(aa?))

*
) >VAVA<

O(a?) O(«@)
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Application ¢ production

One-loop weak correction to tf production

@ Weak correction to gluon fusion

“00073 000 y——>—
A

.
>
-

“000y—>——  7000)

QOO0 s#—=<——  QQ0Q

o (=) = E DAl
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Application  t% production

One-loop correction to tt production: Numerical result

° ‘Input parameters‘

My = 91.1876 GeV, My, = 84.425GeV, My = 120 GeV,
my = 4.6 GeV, m; = 173.2GeV, s = 0.2221236,
a = a, = 1/132.5605045, a,(2m;) = 0.09897922,

HE = R = 2my.

@ | The total cross sections\

o (fb) | qq 99
O(a?) | 55408(9)  354251(66) | (MCFM)
LO | 55386(18) 354254(47) | (Wackeroth)
O(aa?) | -1012.2(5) -3887(1) (MCFM)
NLO weak | -1011(1)  -3886(2) (Wackeroth)

Jia Zhou (Fermilab, UB)
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Application  t% production

One-loop correction to tt production: Numerical result

@ Cross-check of the exact result at LHC = 14 TeV

q@ annihilation q@ annihilation

eE —— weEM ——
Wackeroth - Wackeroth -

Relative Correction &
Relative Correction &

2000 5000

1000 2 000 400 S000 e 7000 000 %000 10000 o 1000 200 E)
i[GeV] pr[Gev]
gluon-fusion gluon-fusion
o 00s
r —— ik —
Wadkeroth Wadkeroth

Relative Correction 5
Relative Correction 5

1000 2000 3000 4000 5000 6000 7000 B000 %000 10000 o 1000 2000 2000 000

3000
Mg [GeV] pr[GeV]
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Application  t% production

Comparison with Sudakov approximation

@ Comparison between Sudakov approx and 1-loop exact calculation at
LHC = 14 TeV with MCFM

qg annihilation qg annihilation

g exact g exact
qq Sudakov ~TT" qq Sudakov

Relative Correction &
Relative Correction &

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 o 1000 2000 3000 4000 5000
Mg [GeV] prlGev]
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Application  t% production

Comparison with Sudakov approximation

@ Comparison between Sudakov approx and 1-loop exact calculation at
LHC = 14 TeV with MCFM

gluon-fusion gluon-fusion
0 T T T T T T T T 0 T T T T
go exact o exact
002 gg Sudakov ------- gg Sudakoy —------
0 0
c c
S S
S S
I I
S S
o o
o o
2 2
& &
5] 5]
4 4
022 L . . . . . . . . 025 . . . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 o 1000 2000 3000 4000 5000
Mg [GeV] pr [GeV]

pt = (m coshyy, pr sin ¢, pr cos ¢, mr sinh y¢),
pg = (mp coshyg, —pr sin ¢, —pr cos ¢, mp sinh yg),

Mtzfj = Qm? + 2m§‘ cosh(yt — yg) + 2p§‘,
mp = 1/p% + mf
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Application  t% production

Comparison with Sudakov approximation

» The invariant mass distributions with rapidity cuts; Sudakov
approximation agrees well with the exact when ‘ytvg‘ <1

gluon-fusion with rapidity cuts

s uxkc | “1 <i
udakov, [y j<1 O
-0.02 exact, IY::‘i <2 Il
Sudakov, [y,{ <2
004 exact, |y <3 i
Rap. sudakov, |y::‘|<3 s
iy, xact, fio cut
o -0.06 [ Uts or, Sudakov nocut v
c 7€ Strigy al
S 008t Ong the
3 rrow (g
S oaf *acy)
3
o 02r 4,
; D/g/,
B 014
3]
@ 016}
018 |-
02 . oo A
0, vog
»f’o,,/
020 L1 . . . . . . . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
M;; [GeV]
Jia Zhou (Fermilab, UB) FermilLab Seminar Talk

., it is clear that for the logarithmic approxi-
mation described be valid all Mandelstam vari-
ables &, £, 4. must be very large, condition which
is obviously not fulfilled at small/large scattering
angles.” [Weak corrections to gluon-induced
top-antitop hadro-production]

[S. Moretti et al, PLB639 (2006) 513]

“The gluon induced part, in contrast, is markedly
angular dependent. For large § and small scatter-
ing angle the corrections are small, since the Sud-
akov-like behaviour cannot be expected in this
case. At ninety degrees, in contrast, the Sudakov
limit is applicable and the corrections become
large.” [Weak Interactions in Top-Quark Pair
Production at Hadron Colliders: An Update]

J. H. Kiihn et al, [arXiv:1305.5773]
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Application  t% production

Summary to tt production

@ We implement EW corrections to the top-pair production in MCFM,
making the calculation accessible to the public.

@ Both EW Sudakov approximation and exact weak NLO are
implemented in MCFM.

@ Sudakov approximation works much better in quark-antiquark
annihilation channel, in contrary to gluon-fusion channel which has a
obvious discrepancy between Sudakov approximation and exact NLO
in invariant mass distribution due to the information of angular
dependence is missing in Sudakov approximation.

@ With a scattering angle cut to gluon-fusion channel, we are able to
get an agreement between both calculations.
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Application Dijets

Dijet production

@ Processes under consideration:
> ¢:q; — q;q;, and its crossing symmetries such as
qiq; — ¢:q;, etc.

> gg — qq, and its crossing symmetries such as
g9q — qg, etc.
@ Processes calculated directly:

» qiq;i — q;q;, for both ¢ # j and ¢ = j, respectively.
> 99 —qq

@ The rest of the production processes is obtained via crossing
symmetries of the directly calculated production
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Application Dijets

Dijet production

@ Sample Born diagrams for the quark-induced production

gi 4j qi qi
gC
gC
q; Qj qi qi
Uj dj qi qi
w Z/y
al CZ 7 Q’L QZ
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Application Dijets

Dijet production

@ Sample Born diagrams for the gluon-induced production

g 1 9" srve>— 1
A
9° _ _
gb q S g
9° g g° g
gC
q q q q
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Application Dijets

Crossing symmetries

> i

@:q — 435, ’direct calculation ‘

09 = ¢i¢;, 2—3,3—>4,4—2;s =t t—>u u—s)
4% — 9545,
GiG; = Gig;, (1—3,3=22,2=1;s =t t > u, u—s)
qiq; — 9:q;, 2435 s (—)t)

4iq5 = Gigj, (1 =3,3—24,4—-2,2-1;5s 1)

12t u)

o~~~ o~

T — 4:G;, ’direct calculation ‘

Tiqi = @G, (14> 2, <> u)

© 00 ~N O G B W N =

qiq — ¢:¢i, (2—3,324,4—=2; s>t t—>u u—s)

—
o

430 — 4igi, (1—53,3—22,2=>1;s =t t—=>u u—s)

where 12 — 34 denotes ¢;q; — ¢;q;
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Application Dijets

Crossing symmetries

> ‘AII gluon-induced production via crossing symmetries‘

gg—>q(j,‘direct calculation‘

99— qg, (

90— qg9, (2—>4,4—3,3>2; s s> u,u—t t—s)

q9 — qg, (1 & 4; s < 1)
(
(

2445 s u)

dgg—dqdg, (1 -2,2—544—-33—=>1;sc1)
g7 =99, (13,24t < u)
dgqg—g9 (1+4,2+3)

0 N O 0B W N

99 — 99, \ no weak correction \

where 12 — 34 denotes gg — qq

work is in progress

o (=) = E DAl
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Application Dijets

Conclusion and outlook

@ The EW radiative corrections are very important at the LHC due to
the Sudakov logarithmic terms.

@ Implementation of the higher order EW corrections in MCFM makes
these corrections available to the public.

@ We have completed the implementation of both the Sudakov and

exact weak NLO corrections to NC-DY and top-pair production into
MCFM.

@ The implementation of EW corrections to dijet production in MCFM
is ongoing.

@ We would like to continue, for instance, with implementation for ZZ
production etc.
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Backup Backup formulism to Sudakov approximation

Higgs external legs

o Self energy

Ve ij/,o" \%&
S A R Y I H

\ /

Dy, Ji.o

@, ab

//\\

H H H H
+ -4 ¢ + - -+

\ /

q)k u®

Dy,

/’\\
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Backup Backup formulism to Sudakov approximation

Higgs external legs

o Counterterm

On Shell scheme renormalization s.t.

SHH _ it 4 sy HH

aiHH 8EHH
R =1 =6Zyg=——-"202
“Top? lp=as i op? lp>=My
N EHH(p2 _ MZ)
ReX#H(p> = M}) =0 = My =2
€ (p i) H 1+6Zng
2 t 2 2
LA O 7 N; m; I
= 0Zyn = — [2C%1 - = 1
HH = |72 0802 ™ 92 M2, OgMIQ{J
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Backup Backup formulism to Sudakov approximation

Transverse gauge bosons

o Self energy

Vd —d ‘1>j
— ya Vb ya Vb yva // \\ Vb
. V‘lvb 19 v 19 v 1 v
> = + ~ AVAVIEE SRAVAY | [ 2%V
pv,0
N\ /
ve u® <I)k
_ ve k
fj’,a’ ;7 -
_ | )
\% Vo _ b
+ A N 4 Vi . W
fj,o'
Dy
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Backup Backup formulism to Sudakov approximation

Transverse gauge bosons

o Counterterm )

. yaysb Vl? Vf . 2

0%, = ~roeoaos = —igu (Cip” — C)

V;Vf : Cl 02

WW~: §Zw M3,8Zw + SM3,

77 : 6227 M26Z 77 + M2
1 1

AZ - 5(<SZAZ +6Zz4) M%;SZZA

AA 674 0

On Shell scheme renormalization s.t.
SYOVE _ gVOr | smyert
aiV“V” 2
ReTi(p) — 0’ Vll — Vb
8p2 p2:Mva
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Backup Backup formulism to Sudakov approximation

Transverse gauge bosons

On Shell scheme renormalization s.t.

ReXy (Miy) =0, ReXf”(M3) =0, ReXp”(MZ) =0,
ReX4%(0) =0, ReX44(0) =0,

o= (v?)
2 Ve V“ 2 _ T,0
:> 6Mva R E (Mva), 5ZVGV!1 = Re 8p2 p2 M‘Q/a’
Vayb ar2
8 Zyyarse = 2Melrg” Mya) =y £ V0.
M2, — M2,
2
LA & )%
5ZV“Vb = E{ [ Vayb — 2Ce Vayb + be ZEV“Vb] lOg Miw

M2
2800 Qo log = | = dvandyeaBa(Miy) + 0211,
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Backup

Transverse gauge bosons

On Shell scheme renormalization s.t.

Backup formulism to Sudakov approximation

M?2 M2 2N, M}
Ht Va
5ZVaVb = 4 {5‘/“V 1252 M2 M2 + 3 TVaVb IOg Mgv}y
M2

Aa(M2) = Z NfoNlog

fj oFt 5o
Tayre = Z [(IV“IW + Q%/aIVbIVa> (I e Evavb]

xk=R,L bt

Euz = —EZA =1,
Vaysi= 3 D?/avb(v) - gD%’aV - Z ZN ZDVaVb

%ngb (gp) = Tr(p {I‘_/CLIVb} _

Jia Zhou (Fermilab, UB)

>

PiPq!

FermiLab Seminar Talk

f Q,Lj=1,2,3 A=R,L

Iva Vb
Pipiy TP pit

o
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Backup Backup formulism to Sudakov approximation

Chiral fermions

o Self energy

Ve Dy
,LEBI/J/U‘I/JO- _ fj’,aﬁfj,o‘ + f]’a‘/ \‘f](r
fj//ygl/ fj//yo.//
@ Counterterm B
fi i

bt ="
= i[(CL-w_+Cr-w)p—(Cq-w_+C&-wy)]

1 1L FuT _ 1 I o
Cr = 3 <6ij, + 025, ) 5 Cr = ) <5ij' 0% )

_ 1 fL 1 fRT
CS = mfj§(5ij, +mfj,§5ij, + (5jj/5mfj,

1 R 1 Al
+ _ f f
Cg = mfjiéij, + mfj,§5ij, + 6jj/(5mfj.
Jia Zhou (Fermilab, UB)
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Backup Backup formulism to Sudakov approximation

Chiral fermions

On Shell scheme renormalization s.t.
SV fe
E]. E i 0 + 5EJ]/,

%002y
mfj,ReEjj, (mfj,)—l—mijeEjj,(mfj,) =0,
~ £L ~ R
ReS!. (m3,) + ReS/; (m3,) +

0 A fR . S
ol o (Rezf (%) + ReSL (%) + 2ReS], (p2)>

= (5mf]. = fRe (Zf.L (m?c) + Z{;(m?cj) + 2ij(m%)) )
521 "= —Rex!(m m3,)

0 : R.R 5,8
—m}jainRe [Ejj (pz) + E;j (p2) + 22;; (pQ)}

)
p2=m2

i
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Backup

Chiral fermions

On Shell scheme renormalization s.t.
fL ,R 2

=35 3
my, mfj/

6Z

fL
XRe |:mf]2/EJJ/ ( fJ

57 sl efie 5100s— V13 Vi1 My (4
= fﬁaff/, ~ (mfn )O( Q00— 35/ 10g % ’ (] #])

)erf]mf Ef

Backup formulism to Sudakov approximation

2 2 2 el
( f]/)+(mfj +mf. )Ejj/

non- vanishing only if invoIving virtual top, but the largest order is

(07

9 219 _3 K K IJ:A ] ./
e S%V M2 Vi vy 3 < 107,102 gy 20, for 5
2 2 2
LA « M2, M2,
= 0Zfr fu = v —Cj,  log M2 + Qf2 <2log)\2 — 3log mfc
3,0
+6Z37

I’

Jia Zhou (Fermilab, UB)
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Backup Backup formulism to Sudakov approximation

Longitudinally gauge bosons

Goldstone-boson equivalence theorem (GBET)

@] .
MV L ‘le ‘Pzn(ql,___’qm7p1,...,pn>:

m
— H i(l—Qvak)AV'lk M‘I’aln-@am‘pﬁw@i" (Qh ey Qmy Pl - -
k=1
+OMEY, AV =1+4+64""
d: mass dim of the matrix element, E ~ /s
One-loop correction to GBET LO
@ correction to GBET itself
S ) A ViR ®)  16M2Z. 1
AV = _L’Of() + {(1+Q@va) 2( ) +-—5— t+ 50Zvaya
Mva,o M 2 M. 2
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Backup Backup formulism to Sudakov approximation

Longitudinally gauge bosons

One-loop correction to GBET LO
@ correction to GBET itself

2 2 2

va LiA (6 ILL NC mt ILL 2 MW

oY 2 T{C8 o 3 — o8 g + Qe los
3M2, M2

T2z, % M2 ’

© FRC (16Zs,4,) to GBET external scalar bosons
Vb

. + ] oF ¢ Pt
Y e X S

N /

-~ —

Dy

2 2 2 2 2
LA « I NC my 1 M. Mg
02,0, = {C log Mz T 18 Mz log m—? 4 log .
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